Wednesday, January 29, 2020

Research on Science Essay Example for Free

Research on Science Essay ABSTRACT The study explores ways in which students who have participated in a curriculum innovation, Science ALIVE! acquire Science process skills and perceive the relevance of Science in everyday life. It investigates whether students have, after the programme, perceived an improvement in applying Science process skills. Four classes of Secondary 2 Express students attended one of four modules in the Science ALIVE! programme and responded to a pre- and post-course survey to measure their perceived skill competency for each process skill. They also responded to questions on whether the programme enhanced their awareness of the relevance of Science in everyday life. Five students from each module were selected to provide written feedback at mid-course and write a journal after the course. The content of their feedback and journals were analysed to provide deeper insight of the results of the perception surveys. The data was triangulated with teachers’ feedback, which was used to provide insight of the factors that affect the acquisition of the process skills. The findings show significant increase in students’ perception of skill competency while a high percentage of students indicated that the programme has made them more aware of the relevance of Science in their lives. INTRODUCTION Traditional learning approaches in which students are passive recipients of knowledge are inconsistent with the call for Singapore schools to Teach Less, Learn More (TLLM). There is a need to allow learning to occur in settings that are relevant to students’ experiences and real world problems. In Clementi Town Secondary School (CTSS), Project Work was used as a platform for students to transfer their learning and apply in authentic applications. However, teachers who had conducted Project Work for Science at Secondary 2 observed that students’ projects lacked depth in the specific content area, and the skills needed for scientific investigations. This spurred the need to cover content knowledge relevant to the projects assigned. It also raised the concern that Science process skills, as stipulated in the MOE Lower Secondary Science (LSS) Syllabus, were not sufficiently emphasised compared to acquiring scientific knowledge. Teachers also indicated that students were una ble to appreciate the relevance of Science in solving problems in their lives after past Project Work tasks. Science Process Skills â€Å"Science process skills† is commonly used to describe a set of broadly transferable abilities that are reflective of what scientists do. These skills are grouped into two types – basic and integrated. Basic process skills provide a foundation for learning the integrated skills, which are more complex skills for solving problems or doing Science experiments. In this study, reflecting is listed as a process skill to be investigated, though it is usually considered part of thinking skills which is a broader category that subsumes process skills. Some Science educators have argued that â€Å"teaching students Science facts is not as important as developing their Science process skills so that they can learn this knowledge on their own† (Young, 1995). Studies in the United States have shown that elementary school students who are taught process skills, not only learn to use those processes, but also retain them for future use. In Singapore, the MOE Primary Science syllabus also emphasises the teaching of basic process skills and some integrated skills, while the LSS syllabus emphasises the use of process skills for planning investigations and creative problem solving, and other thinking skills. Curriculum design plays an important role in the acquisition of Science process skills. The MOE Assessment Guidelines for LSS recommends an explicit teaching of the process skills, followed by the integration of these skills by students in experimenting or carrying out investigative projects. Padilla (1990) pointed out that â€Å"when Science process skills are a specific planned outcome of a Science programme, those skills can be learned by students Teachers need to select curricula which emphasise Science process skills.† These basic skills are learnt more effectively if they are considered an important object of instruction and if proven teaching methods are used. There must be a deliberate effort to focus on teaching process skills through a modified LSS curriculum. Young (1995) recommended that if teachers have the freedom to select their own topics, they should choose topics of direct interest to themselves and which would excite students. Science knowledge serves as background for lessons but should not take up the whole lesson. Instead, more time should be spent on activities that enhance the understanding of Science concepts and improve Science skills. Some studies have shown that instead of using the didactic approach, teaching Science through the use of activity-based approaches significantly improved students’ achievement in Science process skills (Beaumont-Walters, 2001). Berry et al (1999) suggested a few crucial factors that influence the acquisition of process skills used in laboratory work. Firstly, students need the relevant content knowledge that is assumed by the task to be mentally engaged. For example, a more knowledgeable student would be able to explain an observation, which in turn â€Å"validates† his knowledge and gives him a certain amount of intellectual satisfaction. The ‘doing’ of Science has to be coupled with ‘learning about’ Science, if students are to appreciate the value of scientific inquiry (Haigh et al, 2005). A second factor suggested by Berry et al (1999) is students’ ownership of laboratory tasks. Ownership would be more apparent in open laboratory tasks, where the student has to design his own experiment than in closed laboratory tasks, where the â€Å"correct† experimental procedure is written out in a â€Å"cookbook† style and the student is likely to carry out the tasks unthinkingly. Another effective strategy to enhance students’ process skills would be to let students keep a â€Å"scientific journal† (Tomkins Tunnicliffe, 2001). It was observed that diary writers tend to build more confidence in their own interpretations, engage in intellectual debates with themselves over the plausibility of their explanations and ask questions that are more quantifiable. Relevance of Science in everyday life Research studies conducted in recent decades on students’ perception of school Science have consistently shown that they perceive Science as not relevant (Bennett, 2001). Similar findings have raised a serious concern in several countries. For instance, a report by the Dutch Ministry of Education in 2002 observed that secondary school students did not see a connection between what they learnt in Chemistry lessons and the chemistry happening around them (Van Aalsvoort, 2004a). A subsequent report recommended teaching Science in context. However, a study carried out on a contextualised Science curriculum introduced to Swaziland students highlighted some shortcomings (Campbell et al, 2000). The findings showed that less than half of the sample students could draw on Science concepts to explain everyday experiences or solve everyday problems. It was suggested that contextualised learning could be made more effective through student-initiated project work on everyday problems. Van Aalsvoort (2004b) suggested using activity theory to address the issue of the relevance of Chemistry in chemical education, where reflection plays a key role in evaluating and developing an activity. Reflection could be carried out through writing reflection journals, which also helped enhance the acquisition of process skills, as mentioned earlier (Tomkins Tunnicliffe, 2001). According to Van Aalsvoort (2004a), relevance can be defined in four aspects: (i) personal relevance – Science education makes connections to students’ lives; (ii) professional relevance – Science education offers students a picture of possible professions; (iii) social relevance – Science education clarifies the purpose of Science in human and social issues; and (iv) personal/social relevance – Science education helps students develop into responsible citizens. This study considers relevance in three aspects – personal, professional and social. INTERVENTION Project Work aims for students to transfer the learning of concepts into applications in authentic settings. To address the areas of concern raised by teachers teaching Project Work, the Science ALIVE! programme was conceived to integrate Project Work and the LSS syllabus. This 13-week programme was conducted during Semester 2 of the Secondary 2 Express Science curriculum and used alternative assessment to replace the traditional end-ofyear examination. In this programme, a team of teachers crafted four modules which covered a variety of topics from Biology, Chemistry and Physics. As a motivating factor, students could choose from one of the four modules offered: Aroma Chemistry, Biodiversity, Life Science and Water Rockets. In each Science ALIVE! module, specific content knowledge was taught using hands-on strategies such as laboratory work, field trips, journal writing and group discussions. These strategies were intended to promote student engagement. Most importantly, the programme addressed the three key issues of concern in the following ways: 1. Content knowledge covered was specific to each module and relevant to the projects that students were assigned. This enabled students to better transfer the concepts to the projects. 2. Science process skills could be applied by students through journal writing, laboratory work and investigative project work. Science process skills were used as criteria for assessment to emphasise their importance and focus. 3. To enhance the relevance of Science, students were given a choice of the elective module to study, and to decide on the problem to work on for their projects. Contextualised learning, which draws on scientific understanding to explain everyday situations, was consciously infused into the curriculum design for each module. Reflection journals were written after selected activities, which according to activity theory helped students evaluate their learning (Van Aalsvoort, 2004b). RESEARCH QUESTIONS The two research questions are: (1) How does the Science ALIVE! programme help students to apply their Science process skills? And (2) How can the Science ALIVE! programme enhance the relevance of Science in students’ lives? METHODOLOGY Participants 147 students from all four Secondary 2 Express classes attended the Science ALIVE! programme and participated in the study. Pre- and post-course perception surveys were conducted for all students to measure their perception of their skill competency and their awareness of the relevance of Science in their lives through the programme. In addition, five students were selected from each module to give written feedback in week 8 (mid-course) and write a journal in week 13 (at the end of the course). To provide maximum variation, the five students from each module were selected based on their Science grade in Semester 1 and their reasons for selecting the module which reflected their motivational level. Instruments In the pre- and post-course surveys, students were asked to rate their perception of their Science process skills using a four-point Likert scale. The post-course survey included an item to measure students’ perception of increased awareness of the relevance of Science in their lives. Data Analysis For survey items on Science process skills, the mean value of each skill was calculated for the individual module (Table 2) as well as across all modules (Table 1). Skills with ratings of less than 3 (out of 4) were identified and analysed. The differences in mean values for pre- and post-course surveys were compared. The differences were considered significant if there was an increase or decrease of at least 0.3 in value (or 10% of the range of scale used). Journals and mid-course written feedback of the 20 selected students were used to surface possible reasons for these perceptions. The data was triangulated with teachers’ feedback, which was used to provide insight of the factors that affect the acquisition of the process skills. For the survey item on the relevance of Science, the total percentage of students who indicated an â€Å"Agree† or â€Å"Strongly Agree† was computed for each module. Content analysis of the journals and written feedback from the selected students were carried out. Frequency counts of the responses were based on three categories: personal, professional and social relevance. Teachers’ feedback was used to provide depth to the findings. RESULTS Acquisition of Science process skills The perception of all students on the level of their skill competency before and after the Science ALIVE! programme was measured through surveys. The survey results were compared using the mean values for each process skill, as shown in Table 1. Table 1: Comparison of students’ perception of skills before and after Science ALIVE! Mean value (scale 1 – 4) Pre-Course Post-Course 3.1 3.2 2.4 2.5 2.6 2.7 3.1 2.8 2.6 3.0 3.0 2.7 3.1 3.2 Process Skill (a) Elaborating (Research) (b) Conducting scientific investigations (Planning investigations) (c) Conducting scientific investigations (Using scientific apparatus) (d) Conducting scientific investigations (Analysing data) (e) Communicating (Writing scientific reports) (f) Reflecting (g) Questioning (Learning by asking questions) In the pre-course survey, the items which scored less than 3 are the skills of ‘planning investigations’, ‘using scientific apparatus’, ‘analysing data’, ‘writing scientific reports’ and ‘learning by asking questions’. Students’ perception rating increased in the following skills ‘using scientific apparatus’, ‘analysing data’ and ‘learning by asking questions’ suggesting that the Science ALIVE! programme had benefited them in these areas, with the exception of ‘planning investigations’ and ‘writing scientific reports’ where there was marginal increase or no change between the pre- and post-course rating. This revealed that in general, students still did not have much confidence in these skills and suggests that more could be done in the next cycle to guide students in these aspects. The changes in the rating for items (b), (c) and (d) in the pre- and post-course surveys suggest that students’ perceptions that their skills in handling apparatus and equipment have improved. This could be attributed to the fact that students were introduced to various new apparatus or equipment during project experiments in all modules. For example, the Biodiversity module used dataloggers which was equipment new to students. Skills in items (b), (c) and (d) are all part of the process of conducting scientific investigations. However, there was only a marginal increase in the rating for (b) ‘planning investigations’ after the programme. This could be because planning investigations is a higher order process skill which encompasses making hypothesis, identifying variables and writing the experimental procedures. Analysis of Science process skills by skill category The results were further categorised to compare and study the changes in students’ perception of skill competency for the individual modules, as shown in Table 2. Table 2: Comparison of perception of skill competency by module Mean value (Scale 1 – 4) BioLife diversity Science Pre Post Pre Post 2.9 3.2 3.0 3.3 2.3 2.4 2.6 2.9 3.3 2.9 2.4 2.9 2.8 2.4 3.3 3.3 2.4 2.9 2.7 2.5 3.1 2.9 2.8 3.0 3.1 2.9 3.2 3.0 Module Process Skill (a) Elaborating (Research) (b) Conducting investigations (Planning investigations) (c) Conducting investigations (Using scientific apparatus) (d) Conducting investigations (Analysing data) (e) Communicating (Writing scientific report) (f) Reflecting (g) Questioning (Learning by asking questions) Elaborating Aroma Chemistry Pre Post 3.3 3.2 2.6 2.4 2.6 2.7 3.1 3.0 2.7 3.1 2.9 2.7 2.8 3.2 Water Rockets Pre Post 3.1 3.1 2.3 2.4 2.6 2.5 2.9 2.6 2.5 3.0 2.9 2.7 3.0 3.2 The results of item (a) in the pre- and post-surveys showed an increase in rating for this skill for the Biodiversity and Life Science modules. This could be because these modules are more content-based topics, which require greater use of such skills. It should, however, be noted that for Aroma Chemistry module, the pre-course survey score was already high and it might be difficult to make further significant improvement. From the written feedback of selected students in the 8th week of the programme, half indicated that they had learnt to research to look for more information. All five students from the Biodiversity module wrote that they had learnt to assess â€Å"how reliable the sources are†. For example, one student from the module wrote in her journal that â€Å"before creating our ecosystem, we need to do research on the organisms that we choose, on what they feed on and their suitable habitat† (Student S8). Teachers conducting the programme felt that most students were still at the developmental stage of doing research, as they could not extract relevant information from sources. They also observed that some students lacked the initiative and discipline to do research work, though teachers had provided a list of resources. This could be seen in project reports, where the evidence of research is lacking. A likely explanation for this observation is the past practice of didactic teaching, resulting in students â€Å"so used to being given all materials and information by teachers that they do not know how to get started† (Teacher T3). Teacher T1 recommended the need to balance between providing students with information and allowing them to be independent in their learning. Conducting Scientific Investigations For item (b) on ‘planning investigations’, the Life Science module had the largest increase in perception rating (more than 10%). Here the Life Science teacher explained that students were taught how to design experiments step-by-step with given examples. The importance of planning in investigations is stated by one of the students in the module: When we need to choose something, we need to think about all its aspects. After everything is ok, we can start work (Student S14). However, Teacher T2 commented that students still needed a lot of hand-holding and practice to be competent. A student from another module echoed this: â€Å"I am not sure how to design an experiment on my own†. Item (c) on the practical skill of ‘using scientific apparatus’ or equipment had the largest increase for all modules, except Life Science where the initial pre-course rating was already high (mean 2.9). All modules were designed to include more hands-on activities, which required the use of apparatus and equipment. One student wrote about the importance of using the right procedures as he â€Å"learnt how to use steam distillation by setting up the apparatus correctly and doing the extraction properly† (Student S2), while another student shared her new skill of using â€Å"dataloggers to measure the different abiotic factors from the †¦forests† (Student S7). Teachers observed that the students were excited and enjoyed themselves when using new apparatus. On their part, teachers also sought to infuse rigour by ensuring that students perform the experimental procedures accurately. The enjoyment of Science through hands-on activities, particularly laboratory work, was a motivating factor in learning Science. The rating for the skill of analysing or inferring from experimental data in item (d) increased more for three modules than for the Biodiversity module. This could be the result of students being given more opportunities to handle experimental data in their projects and make conclusions for the Aroma Chemistry, Life Science and Water Rockets modules. On the other hand, the investigative project for Biodiversity was of a smaller scale, and students’ main form of project assessment was a conservation proposal. One factor which attributed to the increase in perception rating was group collaboration. As students did their projects in groups, they could discuss how to analyse the data obtained from the investigations. Students analysed their data in various ways depending on the type of data collected in each module. For example, Student S11 commented: â€Å"I got a chance to compare and compile the results of surveys, test the reliability of our product, put into tables and identify the similarities and differences present. Others learnt to analyse the cause of problems in their projects, as noted by Student S16: â€Å"†¦ our rocket failed in launching and we realise that the problem is due to the leaking of our rocket†. Teachers however concurred in their observations that though students could comment on their data, their analysis lacked depth. Besides these investigative skills, many students also reflected in their journals that they had developed observation skills during practical work and investigations. One student wrote: â€Å"In the past, I would have just used my eyes. Now I have learnt to use all of my five senses to know more about the subject I am observing† (Student S10). Communicating In item (e), ‘writing scientific reports’ was the focus in the skill of communicating. Though there was no change in overall student perception (see Table 1), Table 2 showed a significant drop in the rating for Biodiversity module compared to an increase in Life Science module. The Biodiversity teacher attributed the drop in rating to students’ â€Å"realisation and shock† in receiving feedback on their first report draft, as they â€Å"did not anticipate scientific reports to be of slightly different nature and demands though they were briefed†. But she noted that the provision of formative feedback and the re-drafting of reports helped students in this skill. The Life Science teacher linked the increased rating to having provided illustrative examples and templates for students, but she felt that they were still lacking in the skill and could be given more practice. Students’ journals hardly mentioned this skill, except Student S10 who wrote that he â€Å"learnt to sieve through the report for important points to put in the abstract†. Reflecting Generally, students felt that they were able to reflect on their lessons. Item (f) in Table 2 showed an initial high rating which was unchanged after the programme. Students saw their journals as an â€Å"opportunity to clarify and reflect upon their learning† (Student S3). At the end of the programme, a few students said that the reflections helped to monitor their understanding of lessons, and one student mentioned that she would research on the internet to address questions she had (Student S1). Teachers believed that â€Å"journal writing and providing consistent formative feedback help(ed) the students develop reflection skills† (Teacher T1). However, specific journal prompts are necessary to guide students so that they do not simply give a detailed account of the activities and concepts covered without reflecting on the learning points (Teacher T2). Questioning The survey results of item (g) showed more significant increase in the Biodiversity and Water Rockets modules. For each module, students acquired this skill through reflecting on their lessons in their journals and then asking relevant questions to find out more. One student reflected that she dared to ask more questions in class after learning to ask questions through journals (Student S6). Students had opportunities to generate questions when they were verifying the reliability of information. They also formulated questions prior to industrial visits and field trips, and posed them to the experts. At the mid-course feedback, a few students mentioned that they learnt to â€Å"raise questions in class† through ways such as â€Å"being a questioner in group discussions† (Student S13). The Biodiversity teacher attributed this improvement to conducive â€Å"lesson environment and delivery (that) promotes questioning†. Such lesson delivery may include guiding questions in class activities and journal prompts that encouraged further questioning, and peer evaluation where students critiqued the projects of other groups. The Water Rockets teacher reflected that in comparison to traditional Science lessons, â€Å"there was more chance for students to ask questions as things are now less predictable† as in most real world situations. The post-course survey included an item which required students to state whether â€Å"Science ALIVE! lessons have made them more aware of the relevance of Science in their lives†. Table 3 shows the percentage of students who â€Å"agreed† or â€Å"strongly agreed† with the statement. Table 3: Percentage of students who indicated that the programme had made them more aware of the relevance of Science in their lives Module Aroma Chemistry Biodiversity Life Science Water Rockets % Agree 73.5 47.2 64.1 73.0 % Strongly Agree 17.7 50.0 23.1 10.8 % (Agree + Strongly Agree) 91.2 97.2 87.2 83.8 The results in Table 3 show a very high concurrence with the statement for all modules. This is consistent with the programme objective of enhancing the relevance of Science in students’ lives. Students’ journals were analysed for indications of the relevance of Science in three areas: personal, professional and social. A frequency count of the responses showed 82% for personal relevance, 24% for professional relevance and 65% for social relevance. This revealed that students perceived the relevance of Science as mostly related to their personal lives. Only a handful of students could relate the relevance to their future career prospects. Further probing into students’ definition of personal relevance showed an extensive range of interpretation depending on the modules taken. Enhancing one’s quality of life is frequently mentioned in terms of personal relaxation and cure for illnesses. Students from the Aroma Chemistry module stated that they â€Å"could use essential oils to calm a person if he feels nervous† (Student S2). Life Science students surfaced the use of medicines when they fall sick and the growing of genetically modified food (GMF) for convenience (Student S15). Students also stated the importance of process skills in their lives, such as questioning the reliability of information sources. The majority of students could not appreciate Science as having professional relevance. Those who were able to see career possibilities were students who had gone for field trips, where they were introduced to experts in the related field. They saw the knowledge and skills gained through the programme as relevant to their â€Å"future education and working career† (Student S11). Others used the knowledge gained to better understand the requirements of various jobs. A student stated that she â€Å"could understand how people designing furniture, buildings and other things require this knowledge (of centre of gravity)† (Student S16). Three out of five students could relate Science to social relevance, which included how Science affected interaction between people and the environment. One Biodiversity student wrote: â€Å"This also taught me that in school or at work, we have to depend on one another for a living† (Student S10), while another could â€Å"understand nature better† and learnt not to pollute the environment (Student S7). Life Science students pointed out various applications in social and ethical issues, such as the use of forensic Science by police to solve crime (Student S11), knowledge of DNA in cloning (Student S15), and even checking via blood tests whether a child is biologically conceived or adopted (Student S12). Teachers’ feedback indicated that students were generally able to â€Å"connect Science to reality and †¦ in explaining happenings in their lives† (Teacher T2). These observations were made through students’ group discussions and written journals. Examples quoted by the teachers were mostly related to personal and social relevance. It showed that students had an increased awareness of scientific discovery (e.g. antibiotics, genetics) and technology (e.g. making of soap and sweets) that were directly related to their lives and the lives of those around them. The main catalyst that enhanced their awareness was personal experiences through engaging them in experiments that relate to real life and exposing them to more field trips (e.g. Yakult factory, flavour and fragrance industry, nature reserve). DISCUSSION Key features in Science ALIVE! that have helped students acquire Science process skills include scaffolding, group collaboration and journal writing. Scaffolding guides students in learning new or complex skills. Nelson (2004) pointed out that more scaffolding is required for students to be able to do research independently. To illustrate this, the increase in rating for skills on ‘planning investigations’ and ‘writing of scientific report’ in the Life Science module was attributed to â€Å"a lot of hand-holding† and exemplars provided by the teacher. Scaffolding in the form of specific journal prompts can also be adopted to ensure greater depth in student reflection. Teachers, however, will need to balance between providing students support and allowing them to be independent learners. Group collaboration is deployed extensively in the programme, where students worked in groups of three on projects, laboratory work and group assignments. This concurs with findings of a study conducted by Hofstein et al (2004), where cooperative learning in laboratory work helped students construct knowledge. Hofstein et al argued for more time to be spent on laboratory tasks, so that students could reflect on findings and also discuss with their peers. This would be one way to further improve students’ analytical skills, which they are still lacking. Journal writing in Science ALIVE! proves to be very useful in informing teachers of students’ conceptual understanding, acquisition of skills such as reflecting and questioning, and how students relate Science to their everyday life. It allows teachers to give regular feedback as part of assessment for learning. It is also of considerable value to students as it promotes greater ownership to their learning (Tomkins and Tunnicliffe, 2001). This leads to independent learning and moves students to a higher level of thinking, according to the principle on ‘Experience of learning’ in the Principles of Engaged Learning (MOE, 2005). Science ALIVE! lessons are different from the didactic traditional Science lessons, as they focus largely on the application of Science process skills. Hence there is a need to prepare students for the change, for example, from structured experiments to partially open investigations (Haigh et al, 2005). The need for such preparation was evident in the Biodiversity module as students were surprised to learn that scientific reports were different from other project reports, but they managed to overcome it after a few rounds of re-drafting. After the pilot run of Science ALIVE! programme, the teachers recommended that process skills be explicitly taught first followed by opportunities â€Å"created on purpose† for students to practise the skills. This is consistent with Padilla (1990) who suggested the need to provide students with â€Å"multiple opportunities to work with these skills in different content areas and contexts†. To enhance students’ investigative skills, Haigh et al (2005) proposed that teachers provide ‘refresher’ courses to cue students in the planning and conducting of their investigations .On completion of the investigation, students should be given the opportunity to evaluate their work so as to make it more meaningful. In Aroma Chemistry, students were asked to compare the quality of two batches of soap that they had made from different laboratory sessions and analyse the possible causes for the difference, while Biodiversity students had to reflect on the additiona l learning gained after a second trip to the nature reserve. Besides using appropriate strategies to help students adapt to the shift, it is also crucial to rectify students’ mindset on the importance and relevance of acquiring Science process skills. This is because students will be more motivated if they consider process skills an important object of instruction (Padilla, 1990). Thus teachers need to make explicit the â€Å"why† of teaching process skills (Haigh et al, 2005). The deliberate infusion of relevant Science applications in the curriculum of each module has succeeded in enhancing students’ awareness of the usefulness of Science in everyday life. Personal and social relevance dominated students’ ideas of the relevance of Science, though exposure to related industries and appropriate working environments could further promote an awareness of professional relevance. CONCLUSION Going forward, the Science ALIVE! programme would be refined in the next cycle to enhance students’ acquisition of Science process skills. Successful strategies such as the use of reflection journals, activity-based learning, group collaboration and contextualised learning will continue to be used. There would be more emphasis on the explicit teaching of process skills. In addition, more opportunities would be provided for the application of process skills in the core curriculum. RECOMMENDATION Further research on the Science ALIVE! programme could focus on the process skills which students found more difficult to master. With explicit teaching of these skills in the core curriculum prior to Science ALIVE!, the impact could be investigated. The usefulness of Science process skills acquired through the programme could be studied in terms of its impact on Upper Secondary Science, for example, the sustainability of student motivation in Upper Secondary Science. The findings in these research areas will help to inform the effectiveness of future Science ALIVE! programmes. REFERENCES Beaumont-Walters, Y. (2001). An analysis of high school students’ performance on five integrated Science process skills. Research in Science Technological Education, 19(2), 133-145. Bennett, J. (2001). Science with attitude: the perennial issue of pupils’ responses to Science. School Science Review, 82(300), 59-67. Berry, A., Mulhall, P., Gunstone, R., Loughran, J. (1999). Helping students learn from laboratory work. Australian Science Teachers’ Journal, 45(1), 27-31. Campbell, B., Lubben, F., Dlamini, Z. (2000). Learning Science through contexts: helping pupils make sense of everyday situations. International Journal of Science Education, 22(3), 239-252. Haigh, M., France, B., Forret, M. (2005). Is ‘doing Science’ in New Zealand classrooms an expression of scientific inquiry? International Journal of Science Education, 27(2), 215-226. Hofstein, A., Shore, R., Kipnis, M. (2004). Providing high school chemistry students with opportunities to deve lop learning skills in an inquiry-type laboratory: a Case Study. International Journal of Science Education, 26(1), 47-62. Ministry of Education (2005). A toolkit for engaged teaching and learning. Curriculum Planning and Development Division, Ministry of Education, Singapore. Nelson, T.H. (2004). Helping students make connections. The Science Teacher, 71(3), 32-35. Padilla, M.J. (1990). The Science process skills. Research Matters – to the Science Teacher, No. 9004. Retrieved December 1, 2006 from http://www.narst.org/publications/ research/skill.htm Tomkins, S.P., Tunnicliffe, S.D. (2001). Looking for ideas: observation, interpretation and hypothesis making by 12-year-old pupils undertaking Science investigations. International Journal of Science Education, 23(8), 791-813. Van Aalsvoort, J. (2004a). Logical positivism as a tool to analyse the problem of Chemistry’s lack of relevance in secondary school chemical education. International Journal of Science Education, 26(9), 1151-1168. Van Aalsvoort, J. (2004b). Activity theory as a tool to address the problem of Chemistry’s lack of relevance in secondary school chemical education. International Journal of Science Education, 26(13), 1635-1651. Young, R. M. (1995). Hands-on Science. Westminster, CA: Teacher Created Materials, Inc.

Tuesday, January 21, 2020

Anxiety Disorders Essays -- OCD Post-Traumatic Stress Panic

This paper is going to be about anxiety disorders. I am going to explain what anxiety is and the different types of anxiety disorders. The types of anxiety I am going to talk about are Obsessive Compulsive Disorder (OCD), Post-Traumatic Stress, Panic Disorder and Social Phobia.   Ã‚  Ã‚  Ã‚  Ã‚  Anxiety is a normal reaction to stress. It helps some one deal with a tense situation in the office, study harder for an exam, keep focused on an important speech. In general, it helps some one cope. But when anxiety becomes an excessive, irrational dread of everyday situations, it has become a disabling disorder.   Ã‚  Ã‚  Ã‚  Ã‚  Anxiety disorders are serious medical illnesses that affect approximately 19 million American adults. These disorders fill people's lives with overwhelming anxiety and fear. Unlike the relatively mild, brief anxiety caused by a stressful event such as a business presentation or a first date, anxiety disorders are chronic, relentless, and can grow progressively worse if not treated. Obsessive Compulsive Disorder: OCD afflicts about 3.3 million adult Americans. It strikes men and women in approximately equal numbers and usually first appears in childhood, adolescence, or early adulthood. One-third of adults with OCD report having experienced their first symptoms as children. OCD involves anxious thoughts or rituals you feel you can't control. With OCD you may be obsessed with germs or dirt, so you wash your hands over and over. You may be filled with doubt and feel the need ...

Sunday, January 12, 2020

Hrm: Procter & Gamble

Human resource management is a vital part to any business striving to be successful in the world. Every business has a way that they like their business to be ran. Human Resource management is the â€Å"policies, practices, and systems that influence employee’s behavior, attitudes, and performance. † Without human resource management many companies would simply not be able to function correctly. Human resource management deals with every practical part that has to do with people in general. It depends on the employees of a company to want their company to be a success.It is always a team effort to make sure everything is right and acceptable. This paper explores the different aspects of human resource in a company. It details the relationship between human resource strategies and business strategies. It shows specific strategies that will benefit a company’s overall objective. The strategic partner is discussed greatly in the paper. The paper discusses the situat ion where the strategic manager reports to the CEO or in some cases where it does not. Procter and Gamble is the company that will be discussed in regards to its business and human resource strategies.There are key competencies that the strategic manager must follow to assess what is needed to develop programs for a company. The career path for a senior executive is also discussed. | The human resource department of a company usually formulates more than one strategy. They all come together for one purpose and that is the success of the company. In order to advance to an actual strategy a company’s human resource department must go through many steps devising. A company’s human resource strategy usually consists of many things such as, what the company, employees, and sometimes their customers need.The relationship between human resource strategies and business strategies aids in the outcome of the company’s goals. One of the main goals of human resource managem ent is to make sure that the company’s human resource provides a competitive advantage over other companies. There are many problems that exists that cause human resource management to choose other routes for the company. The strategies the company chooses can be â€Å"the specific adjustments and actions taken to deal with a particular situation. † That is the reason there is always more than one strategy in business. For every problem, a new solution is needed to solve it.The human resource strategy and business strategy go hand and hand. Human resource typically is what helps the company’s business strategy to come together. The human resource department decides on recruitment, compensation, recruiting, training and development and also evaluating performance. Human resource has to make sure the company is competitive in relation to other companies in their spectrum. â€Å"Competitiveness is related to company effectiveness, â€Å"which means that a company must make sure that all people involved with their company are satisfied and receiving what they expect.Important people include stockholders, customers and employees. Stockholders generally expect to receive a return on their investment that they have purchased from the company. If the company cannot pay out stockholders then this must mean that the company is not making money. The customers expect a product of high quality or service just as good. People set high standards on products and services that they like. If they are not satisfied then the company has not succeeded in this. Without competition companies would probably never make the maximum profit that they are able to make.Competitiveness aids in helping a company go over and above the standard of what is expected. Human resource helps with this. All aspects of the company rely on the human resource strategy. Every company has a business strategy that they go by. What the company wants to focus on to be successful typica lly maps out their business strategy. The business strategies are usually the base of a successful business. The business strategies usually answer many questions about the company and what their expectations are for the long run.The long-term view of the company, the markets they want to pursue, what resources they need, and the main point they think about is whether they will be able to keep up and compete. The strategy a business chooses is what makes the company know how they will function. Choosing a strategy is not the end to the process, the company still has to figure out how they will apply it to the company’s way of functioning. Strategy has to be thought about on a level of what the company can do regarding the internal and external environment.The business strategy has to be able to work with both internal and external activity to be successful. Without a successful internal, there is no way the company can excel at the level that they wish to. The company uses it ’s mission, goals, external and internal analysis to reach their business strategy. The relationships between human resource strategy and business strategy have reason together. They both go hand and hand with one another. People have to believe in a strategy and this requires that leaders create the right environment for the change to occur and for believing that it can.All human resource strategies are implemented with the business strategy in mind. Human resource strategies usually provide support for the business strategy. The human resource strategies and business strategies must be aligned. The aligning of the two strategies is important because it helps the company to execute its business strategy. A company’s business strategy needs certain things from human resource. The human resource strategy must be able to complete its goals to the company by providing employees that are needed to carry out the business strategy.The human resource strategy has many feature s that aid in the future success of the business strategy. Human resource has a major influence on business strategy. A successful business depends on how well the human resource strategy is implemented to aid in the business strategy. The Procter and Gamble Company, is one of the largest packaged consumer goods company in the world. Procter and Gamble is responding creatively and competitively with branded products and services that enhance firm’s performance and their consumer’s satisfaction.Two men, William Gamble and John Procter, founded Procter and Gamble. Procter and Gamble strives to provide products and services of the best quality. Their products must be of the best standards. They strive to offer products that will take them over the competition by the customers. Procter and Gamble has come a long way from where it started in 1837. The company employs over 98,000 people and they operate in over 140 countries. Procter and Gamble first started its production b y working out of a storeroom. The business began during nationwide panic and depression.But the struggling young firm survived. Cincinnati proved a sound business base because as a meat packing center, it offered plenty of fat and oil for soap and candle making. Procter and Gamble’s profit is more than some countries GDP. They produce many products from soap to baby diapers. They are a company that many people depend on. Procter and Gamble is a company that focuses on sense and value. Procter and Gamble has a strategy of touching and improving more consumers’ lives in more parts of the world. One of Procter and Gamble’s biggest functions is the idea of innovation.Procter and Gamble are known around the world for its innovation of its products. The success of Procter and Gamble comes from the company not being afraid to take risks. They have ventured and tried many products un-related to what products they began with. Procter and Gamble owns over 300 brands. Proc ter and Gamble has prospered by organizing around customer driven innovation. Procter and Gamble works by trying to increase how much earning per share of their company is a year. It usually starts at 4% to 6% but by the end of the year it has grown a couple of percents.This helps to show the company that they are making a profit because of the increases. Procter and Gamble work to connect with the consumer and customer. The innovation of product depends on the customer’s first experience. If they enjoy it, then Procter and Gamble have found a new loyal user. The innovation strategy is a great way for the company to achieve its overall goals. If the innovation is a success than the company has a new product that consumers and customers can get. It provides satisfaction to customers, helps with the company’s profit, and would essentially be a positive thing for the company.Procter and Gamble is a company that focuses on the good of the environment and people. There are different human resource strategies that can influence Proctor and Gamble’s ability to achieve its objective. A type of human resource strategy that provides certain compensation for workers who achieve goals for that the company has set would be effective for the company. Employees would work harder to get money when there is an essential benefit to what they are doing extra for the company. It sort of challenges the employees to work over and above what they are expected by the company.Another, type of human resource strategy would be the type of recruiting the human resource department chooses. The human resource department must recruit in places where the best people are. A company wants the best and most knowledgeable workers they can get to achieve objective. A third human resource strategy could be related to benefits to customers. Any person would love to work in that offer the best benefits for both short and long term.. With this strategy, human resource would conce ntrate on helping their employees. There could be many different type of programs implemented to help employees with any need they have.There are different strategies that human resource could use to obtain a company’s objective. They all must come together for the positive influence of the company. The human resource management side of an organization is important for a business. The human resource department reports to the chief executive officer or CEO as a strategic partner. The chief executive officer expects a lot from human resource. Communication is a key for the business to rely important information to higher levels of the business. The strategic partner is the person that aligns human resource management strategies to business strategies.They would typically be the person that reports all information about human resource to the chief executive officer. By reporting to the CEO, the strategic partner is building a relationship between the two. The report the strategi c partner shares with the CEO is translating the human resource case into a definite plan. The role of strategic partner gives direct contact with the CEO. Human resource has the opportunity to more opinion of the expectations and challenges a company faces with direct contact with the CEO. Being a strategic partner provides the human resource department with more input in company decision.The consequences that a company might face because of the human resource not reporting to CEO could be minor or major. Depending on the company, the human resource aspect of the company not reporting to the CEO directly might cause a problem because of the lack of communication. The CEO is the person who is a top power of the company. When the human resource reports as strategic manager is shows the human resource department more about the company. They have more inside view of the company’s needs for future planning of human resource.The CEO’S opinion matters greatly when it comes t o human resource and their decision. All businesses must work as a team in order to achieve their overall objectives. As stated earlier, the human resource strategy and business strategy work together. Therefore without the reporting to the CEO there might be miscommunication between what is expected from both departments. The strategic partner provides good opinions to the CEO on behalf of the human resource department. Without this connection between the strategic partner and CEO, the company might lose out on vital information needed to make it better.All employees should work together for the greater good of the company. A human resource executive must know the key competencies of business in order to develop appropriate programs for the company. There are four main competencies a human resource executive must be aware of. The first is the business competence. This is knowing all about the company. The human resource executive must be aware of the company’s financial capa bilities. The business competence helps in making decisions that helps support the company’s strategic plan. This competence also deals with both monetary and nonmonetary business.The human resource executive must make decisions based on the amount of money available but also make decisions about other issues that do not require money. The next competence would be the professional and technical knowledge aspect of business. The human resource executive should know everything that regards to human resource management practices. They need to know everything and keep up with new programs and plans being applied to human resource departments. The human resource executive must be able to know what new programs can be used to benefit the company.The human resource executive also must be equipped in the ability to change. The HR executive must keep up with any change in the company. One minor change within the company’s strategy causes every department to change in a way. Cha nges might cause problems for departments. The human resource executive must be able to oversee these problems and choose the most efficient way to solve. The final thing the human resource executive must know is the integration competence. The human resource executive must be able to bring together all the competence to ensure the company’s value is up.All parts of the company’s human resource should work together to ensure the goal they are seeking to meet. With the knowing the different competencies for human resource, the executive should be able to develop different risk management programs for the company. The human resource executive should be very knowledgeable about the company and the external environment in order to assess what is needed. There are many jobs available in the field of human resource management with many different salary ranges. Of course, the top paying human resource job ould be senior human resource executive. A college degree and postgradu ate work are what most workers of the human resource profession have. Many companies train beginning human resource workers by letting them work in different departments of the business. When they eventually move up in the HR department they have a sense of how the business is ran. The path to being a senior human resource executive comes with time and experience. A person must always start at the bottom and make their way to the top. There are many HR jobs available with different specialization.A person must climb the corporate ladder in order to become a senior HR executive.References Anonymous. â€Å"Strategic HR Review. † Chicago: Jan/Feb 2005. Vol. 4, Iss. 2; pg. 6, 1 pgs. Bates, Steve. â€Å"FACING the future. † HRMagazine 47. 7 (2002): 26. Business Source Elite. EBSCO. Web. 28 Apr. 2010 Berger, Lance A. â€Å"Anatomy of a successful HR executive. † HR Focus 75. 3 (1998): 11. Business Source Elite. EBSCO. Web. 28. Apr. 2010. Harrington, Siam. â€Å"Human Resources. † London: Apr 2007. Pg. 25, 2 pgs. Leonard, Bill. â€Å"What Do HR Executives Want from CEOs? †. HRMagazine 43. 13 (1998): 92. Business Source Elite. EBSCO. Web. 28 Apr. 2010. Noe, Raymond. , Hollenbeck, John. , Gerhart, Barry. , Wright, Patrick. Human Resource Mangement: Gaining a competitive advantage. 5th edition Saporito, Bill. â€Å"Making P & G New and Improved. † Time International (South Pacific Edition) 16 (2008): 53. Business Source Elite. EBSCO. Web. 27. Apr. 2010. Strategy, Goals & Progress. Procter & Gamble. www. PG. COM (26. Apr. 2001) â€Å"What CEOs Want From HR. † HR Focus 79. 9 (2002): 1. Business Source Elite. EBSCO. Web. 28 Apr. 2010.

Saturday, January 4, 2020

The Tragedy Of Othello By William Shakespeare - 1175 Words

Quashallia Potter June 17, 2015 English 1102 Professor Duke The Tragedy of Othello In Shakespeare’s The Tragedy of Othello, Desdemona’s relationship makes us question: What is love? Desdemona is a young beautiful white woman, who is the daughter of a prominent Venetian senator. Desdemona is her father’s pride and joy, however she refuses to marry any of the rich, handsome Venetian men that her Father and everyone else thinks are suitable for her. Desdemona marries General Othello who is an older black man. Othello is accused of stealing her away from her father through magic and spells, â€Å"She is abus’d, stolen from me, and corrupted by spells, and medicines, bought of Mountebanks; for nature, so preposterously to err, (Being not deficient, blind, or lame of sense) sans witch-craft could not†. Desdemona’s father refers to Othello as â€Å"Moor† because he did not think very highly of him and this is a type of racial slur. In spite of the animosity unknown to Othello, the two appeared to share a romance and love that did not let the racial culture differences affect their relationship. Othello had complete control and power over the men, horses, and townsfolk’s by being the top General. Othello was the â€Å"general manager† nothing was ever planned without his approval. Desdemona overhearing Othello’s war stories and tales of courage and bravery, became enamored by Othello. To understand the Dynamic between Othello and Desdemona we must first examine the individualShow MoreRelatedThe Tragedy Of Othello By William Shakespeare757 Words   |  4 Pages The Tragedy of Othello by William Shakespeare William Shakespeare uses many literary devices to enhance and provide greater complexity in his works. More specifically, the theme, symbolism, and dramatic irony are used to enrich Shakespeare’s The Tragedy of Othello. The plot is definitely engaging but the theme allows for an universal human correspondence, furthering the depth of the author’s message. The element of symbolism contributes to the theme of Shakespeare’s tragedy. Symbolism expressesRead MoreThe Tragedy Of Othello By William Shakespeare938 Words   |  4 Pagesâ€Å"The Tragedy of Othello† is commonly considered one of Shakespeare s greatest tragedies and one of his finest works. In this play we see many literary devices at work. Several of these devices are involved in Iago’s deceitful plot against Othello that creates much suspense for the duration of the play. In â€Å"The Tragedy of Othello,† William Shakespeare uses symbolism, irony, and tone to create this classic drama . Symbols are central to understanding â€Å"Othello† as a play. There are two significantRead MoreThe Tragedy Of Othello By William Shakespeare Essay1537 Words   |  7 PagesDrake Usher Ms. Zamanis Honors English II March 18, 2016 Othello Essay â€Å"The Tragedy of Othello,† by William Shakespeare, is about the tragic downfall of a once great man named Othello by the manipulation of Iago, the antagonist of the story. However, a deeper meaning of Othello could be â€Å"[It] is a tragedy of incomprehension, not at the level on intrigue but at the deepest level of human dealings. No one in Othello come to understand himself or anyone else.† It is debated on whether or not this isRead MoreThe Tragedy Of Othello By William Shakespeare Essay1418 Words   |  6 Pagesentertainment through their literature since the first known published work. However, for many centuries the writer has also been seen to have a diagnostic function, scrutinizing the ills of their society and portraying them for the world to see. William Shakespeare, 1564-1616, was an English playwright, poet and actor, widely regarded as the greatest writer in the English language and the world s most distinguished dramatist. His surviving works, incl uding some collaborations, consist of about 38 playsRead MoreThe Tragedy Of Othello By William Shakespeare1141 Words   |  5 Pages2 Hr 16 December 2014 Othello Essay The Tragedy of Othello The renowned play of Othello was written by William Shakespeare in the 17th century. The drama follows the life of Othello, a well-respected and admired Venetian general, and the lie he gets tangled up in. Othello is deceived by his â€Å"trustworthy† friend, Iago, who confidently convinces Othello that his honest wife, Desdemona, committed infidelity upon him with his honorable lieutenant, Cassio. At the start, Othello doesn’t quite believe IagoRead MoreThe Tragedy Of Othello By William Shakespeare1737 Words   |  7 PagesThe Tragedy of Othello the: Moor of Venice was written by William Shakespeare, and it is only one of countless notable plays he wrote. A reoccurring theme in Othello is jealousy brought on usually by deception; throughout the play people often hide their true intentions and are not always what they appear to be like W.H Auden said â€Å"There s always another story. There s more than meets the eye.† The relationships Iago built on manipulatio n, lies, and false promises were a crucial part of the play;Read MoreThe Tragedy Of Othello By William Shakespeare998 Words   |  4 Pages The Tragedy of Othello: The Moor of Venice is William Shakespeare’s play, written around sixteen hundreds. The Tragedy of Othello is not just a story of jealousy; this is a tragedy of the clash of two worlds. One of them is a world of absolute cynic, manipulate or Iago; the second world is the world of all the other characters in the tragedy, including, possibly, even Othello. Even though both of the main male characters, Iago and Othello, are murderers, they have different types of charactersRead MoreThe Tragedy Of Othello By William Shakespeare864 Words   |  4 PagesIn the play The Tragedy of Othello, The Moor of Venice by William Shakespeare, Emilia is portrayed as a women who doesn’t have enough self-confidence. She does many awful misdeeds to please her husband, and hopes that he will give her some affection. She just want to make her husband happy. Emilia betrayed her lady Desdemona, because Lago asked for her handkerchief for a while and since she just dropp ed it, suddenly, Emilia thought that this was her opportunity to quickly grab it and make LagoRead MoreThe Tragedy Of Othello By William Shakespeare1133 Words   |  5 PagesThe Tragedy of Othello, the Moor of Venice, is a play written by William Shakespeare between 1601 and 1604 in England. Shakespeare is a legendary author, poet, and play writer. He has wrote many plays like Romeo and Juliet, Hamlet, Macbeth, and King Lear Othello is about a black general by the name of Othello who is desperately in love with a young woman named Desdemona. They marry and attempt to build a life together, even though Othello is way older than she is, he’s black, and did not come fromRead MoreThe Tragedy Of Othello By William Shakespeare1854 Words   |  8 PagesThe play â€Å"The Tragedy of Othello, the Moor of Venice† by William Shakespeare is often listed among the greatest stories of tragedies which explores numerous controversial topics including Inter-racial marriage, racism, j ealousy and revenge. While the titular character Othello is the protagonist of the story and definitely does occupy a large part of the play, the real focus of the play is on the ‘ingenuous’ Iago who makes everyone dance on his fingers and successfully manipulates them. The â€Å"Honest†